Algebraic Topology

Algebrait Topology builds "functions" (actually functors) (Topological spaces, ) ⇒ (algebraic things,) vector spaces (continuous maps) (algebraic maps) the main point is to show two topological spaces are different C.g. R<sup>n</sup> ∉ R<sup>m</sup> it n ≠m ~ homeomorphic  $\mathbb{R}^3$ -  $\bigcirc \not\cong \mathbb{R}^3$ -  $\bigcirc$ but can use alg. top. for many other things 1) maps between spaces · does a given space M embed in N? eg for what m does RP" embed in R"? (answer not known wigeneral!) · can you "lift" a map? re given  $f: A \rightarrow B$  and  $\pi: E \rightarrow B$ does there exist f: A→E st. Tof=f? this includes 3 of sections of bundles

but before we start we will develop so important ideas that will be used throughout the course

## O. Homotopy and CW Complexes

A. <u>CW complexes</u>

We develop alg. top. for all topological spaces, but a convenient (and very large) class of spaces to study ore (W complexes

let D' C IR' be the unit disk

5<sup>n-1</sup> = ∂D<sup>n</sup> its boundary given • Y a topological space and maps will be assumed to be • a: s<sup>n-1</sup>→Y a continuous map Continuous even it it is not stated the space obtained from Y by attaching an n-cell (via a) is

 $Y U_a D^n = Y \perp D^n_{\{x \sim a(x)\}}_{x \in S^{n-1}}$   $D^n_{a(S^{n-1})} Y U_a D^n \text{ is given the quotient}_{topology}$ 

An <u>n-complex</u>, or <u>n-dimentional</u> <u>CW complex</u> is defined inductively by a (-1) complex is Ø an n-complex X<sup>n</sup> is any space obtained from an (n-1)-complex X<sup>n-1</sup>by attaching n-cells if  $X = \bigcup_{n=0}^{\infty} x^n$ , where  $X^n$  is an n-complex obtained by attaching n-cells to  $X^{n-1}$ the we say X is an infinite dimensional complex we say a CW complex is finite if it only involves a finite number of cells the <u>k-skeleton</u> of X, is the union  $X^{(k)}$  of all 1-cells for  $1 \leq k$ <u>Remarks:</u> i) C. vi CW shade for closure finite and with means the

1) C in CW stands for <u>closure</u> finite and just means the closure of each cell is contained in the union of finitely many cells

2) W in CW stands for weak topology and means a set S

in X is open ⇒ Sn X<sup>(h)</sup> open for all k
(this is automatic if X is finite dimensional)

3) CW complexes are Hausdorff spaces (see Hatcher)
<u>Exercise</u>: Show the product of CW complexes is a CW complex.

Examples:

- 1) I-dim CW complexes are graphs
- 2) Surfaces are CW complexes



a <u>subcomplex</u> of a CW complex X is a closed subspace ACX that is a union of cells in X note A is a CW complex too (X,A) is called a <u>CW pair</u>

B Homotopy

A fundamental notion in algebraic topology is homotopy and homotopy equivalence

let X and Y be topological spaces two maps  $f, g: X \rightarrow Y$  are <u>homotopic</u>,  $f^{\prime}g, if$  there is a continuous map  $\overline{\Phi}: X \times [o, \mathcal{I} \longrightarrow \mathcal{V}]$ 1 is called a homotopy) S.t.  $f(x) = \overline{\phi}(x,o) \quad \forall x \in X$ g(x)=∮(x,1) ∀x ∈X <u>Remarks</u>: 1)  $\oint$  gives a family of maps  $\phi_t: X \rightarrow Y$  where  $\phi_t(x) = \oint(x, t)$ these maps are "continuous in t" in the sence that  $\Phi$ is continuous. so maps are homotopic if we can continuously deform one into the other 2) if ACX, then we say the homotopy from f to g is relative to A, denoted f ~ g, it in oddition to above  $\overline{\Phi}(x,t) = f(x) = g(x) \quad \forall x \in A, t \in [0,1]$ 3) if A < X and B < Y, then the notation f: (X, A) -> (Y, B) means  $f: X \rightarrow Y$  is a map and  $f(A) \subset B$ we say f is a map of pairs If  $f, g: (X, A) \rightarrow (Y, B)$ , then they are homotopic (as maps of pairs) if ] a homotopy st. each of is a map of pairs <u>Example</u>: for any space X any map f: X -> Eo.1] is homotopic to the constant map g(x)=0 the homotopy is  $\Phi: X \times [0,1] \longrightarrow [0,1]$  $(x,t) \longmapsto (i-t) f(x)$ 

Exercise: homotopy is an equivalence relation on maps 
$$X \rightarrow Y$$
  
let  $C(X,Y) = \{ \text{continuous maps } X \rightarrow Y \}$   
 $[X,Y] = C(X,Y) / [ - homotopy ] = \{ \text{homotopy classes of maps } X \rightarrow Y \}$   
 $[X,Y] = C(X,Y) / [ - homotopy ] = \{ \text{homotopy classes of maps } X \rightarrow Y \}$   
 $[X,Y] = C(X,Y) / [ - homotopy ] = \{ \text{gold = o} \}$   
i) for any  $X$   
 $[X, [0,1]] = \{ \text{gold = o} \}$   
2) for any  $X$   
 $[[Y,X]] = \{ \text{path components of } X \}$   
 $\text{one point space}$   
We call a space  $X$  pointed if it has a "base point"  $x_0 \in X$   
 $\{ \text{just some prechosen fixed point"} \}$   
 $[X,Y]_0 = \{ \text{homotopy classes of maps of pairs } (X, \{x_i\}) \rightarrow (X, \{x_i\}) \}$   
let  $y_0$  be the north pole  $w_1$  the n-sphere  $S^n$   
 $(n.e. S^n = onit sphere  $w_1$   $\mathbb{R}^{n+1}$   
 $y_0 = (o_1, \dots, o_1) \}$   
the nth homotopy group of a (pointed) space  $(X, x_0)$  is  
 $T_n(X, x_0) = [S^n, X]_0$   
these are all groups and we will spend some time studying  $T_1(X, x_0)$  which is also called the fundamental group$ 

Question: For what Y is [Y,X], "naturally" a group for all X? For what Y is [X,Y], "naturally" a group for all X?

Note: given a map 
$$f: X_i \rightarrow X_z$$
 there is a natural function  
 $f_*: [Y_i, X_i] \rightarrow [Y_i, X_i]: g \mapsto f \circ g$   
and  
 $f^*: [X_{i_1}, Y] \rightarrow [X_{i_1}, Y]: g \mapsto g \circ f$   
(Proof: just compose homotopy with f)  
Rimk: Natural in question above means  $f_*$ , resp  $f^*$ , is a homomorphism  
We say  $f: X \rightarrow Y$  is the homotopy inverse of  
 $g: Y \rightarrow X$  if  $f \circ g \sim id_Y$  and  $g \circ f \sim id_X$   
if  $g: Y \rightarrow X$  has a homotopy inverse then we say g is a homotopy  
equivalence and we say X and Y are homotopy equivalent  
or have the same homotopy type and write  $X \simeq Y$   
Exercise: This is an equivalence relation

3) for any space 
$$Z$$
 there is a one-to-one correspondence  
 $\phi^{Z}: [Z, X] \rightarrow [Z, Y]$   
such that for all continuous  $h: Z \rightarrow Z'$   
 $[Z, X] \xrightarrow{\phi^{Z'}} [Z, Y]$   
 $\downarrow h^{*} \qquad \downarrow h^{*}$   
 $[Z, X] \xrightarrow{\phi^{Z}} [Z, Y]$ 

<u>Remark</u>: So two spaces are homotopy equivalent iff homotopy classes of maps to and from the spaces are "naturally equivalent" <u>Examples</u>:

0) if X and Y are homeomorphic, then they are homotopy equivalent.

1) 
$$X = 5'$$
 is homotopy equivalent to  $Y = 5' \times [0,1]$   
indeed:  $f: X \to Y: x \mapsto (x, 0)$   
 $g: Y \to x: (x, s) \mapsto x$   
note:  $g \circ f = i d_X$   
 $f \circ g \sim i d_Y$  by  $\phi_t: Y \to Y: (x, s) \mapsto (x, ts)$ 

2) A space X is called <u>contractible</u> it it has the homotopy type of a point.

e.g.  $\mathbb{R}^n \simeq \{ * \}$  (exercise)

3) if ACX then a <u>retraction</u> is a map r: X→A such that r(x)=x tx ∈ A a <u>deformation</u> <u>retraction</u> of X to A is a homotopy, relA, from the identity on X to a retraction:

$$\phi_t : X \to X \quad t \in [0, 1]$$
  

$$\phi_0(x) = x \quad \forall x \in X$$
  

$$\phi_1(X) \subset A$$
  

$$\phi_1(x) = x \quad \forall x \in A \text{ and } t$$

note: If X deformation retracts to A then  $X \cong A$ indeed let  $\cdot \phi_t$  be homotopy above  $\cdot i: A \longrightarrow X$  the inclusion map then i and  $\phi_i$  are homotopy inverses

Since 
$$\phi_i \circ i = i \partial_A$$
 and  $1 \circ \phi_i = \phi_i \sim \phi_i = i \partial_X$ 

given spaces X, Y and  
a map 
$$f: X \rightarrow Y$$
  
the mapping cylinder  $M_{f}$  is  
 $M_{f} = (X \times [o, i]) \amalg Y$   
where  $(X, i) \sim f(X)$   
note:  $M_{f}$  deformation retracts to Y  
indeed  $\widetilde{\phi}_{f}: \stackrel{(X, S) \in X \times [o, i]}{Y \in Y} \mapsto (X, (i-t)s+t) \in X \times [o, i]}$   
induces maps  $\phi_{f}: M_{f} \rightarrow M_{f}$  s.t.  $\phi_{o} = id_{M_{f}}$   
 $\phi_{i}(M_{f}) \in Y$   
 $\phi_{f}(Y) = Y \quad \forall Y \in Y$ 



examples

1) X a graph A = any edge connecting distinct verticies  $\begin{cases} X_A \simeq X \\ A \end{array}$ so any connected graph is homotopy equivalent to a wedge of circles χ 5'v 5'v...v 5' ×<sub>/A</sub> = vedge of 5'5 `A maximal tree (X, x0) V (Y, Y0) 2) = × 11 4/ (x-16) X = = S<sup>2</sup>/poles identified X/<sub>A</sub> ≅ ×⁄<sub>B</sub> ≅ ≅ 5<sup>2</sup> v 5'  $X_{A} \simeq X \simeq X_{B}$ 3) X と TIV AN A٩  $\left( \left( X_{A} \right)_{A_{1}} \right)_{A_{2}}$ Y/B C B Y/<sub>C</sub>

To prove both lemmas we need the homotopy extention property  
(HEP)  
A space X and a subspace 
$$A \in X$$
 has the HEP if  
whenever we have a map  $F_0: X \rightarrow Y$   
and a homotopy  $f_{\xi}: A \rightarrow Y$  of  $f_0 = f_0|_A$   
then we can extend the  $f_t$  to  $F_t: X \rightarrow Y$   
lemma 4:  
A pair (X, A) has the HEP  $\Leftrightarrow$  (X \* foillu(A \* io, i)) is a retract of X \* io, i]  
see Hatcher for general case  
Proof: ( $\Leftarrow$ ) we assume A is closed (not nec. but makes proof easier and  
given the retract  $r: X \times io, i \rightarrow X$  and homotopy  $f_t: A \rightarrow Y$  of  $f_0 = f_0|_A$   
note this defines a map  $F_0: (X \times io)! u(A \times io, i) \rightarrow Y$ 

F is continuous since A is closed  
now For: 
$$X \times [0,1] \rightarrow Y$$
 is the desired homotopy!  
( $\Rightarrow$ ) Consider the identity map  $F: X \times [0] \cup A \times [0,1] \rightarrow X \times [0] \cup A \times [0,1]$   
this gives  $F_0: X \rightarrow X \times [0] \cup A \times [0,1]$  by  $F|_X$   
and  $f_t: A \rightarrow X \times [0] \cup A \times [0,1]$  by  $f_t = F|_{A \times [t]}$   
so  $HEP \Rightarrow \exists F_t: X \rightarrow X \times [0] \cup A \times [0,1]$   
the  $F_t$  give a map  $r: X \times [0,1] \rightarrow X \times [0] \cup A \times [0,1]$   
( $x,t$ )  $t \rightarrow F_t(x)$   
that is clearly a retraction

Proof:  
Main point: for any disk 
$$D^n$$
 there is a deformation  
retraction of  $D^n \times [o_i]$  to  $D^n \times [o_i] \cup \partial D^n \times [o_i]$   
Pf: let  $D^n \subset \mathbb{R}^n = \mathbb{R}^n \times [o_i] \subset \mathbb{R}^{n+1}$   
so  $D^n \times [o_i] \subset \mathbb{R}^{n+1}$   
let  $p = (0, 0, ..., 0, 2)$   
given  $x \in D^n \times [o_i]$  let  $l_x = line through x and p$   
and set  $\tilde{r}(x) = l_x \cap (D^n \times [o_i])$   
unique point!  
clear  $\tilde{r}$  is a retraction (need to chech containous  
and  $\tilde{r}_t = t\tilde{r} + [l-t] \log D^n \times [o_i]$   
is a deformation retraction.

We define 
$$r$$
 on  $X^{(0)} \times [0, 1] \longrightarrow [X \times [0]] \cup (A \times [0, 1])$  as follows  
if a vertex  $D^{\circ} \subset A$ , then let  $r$  be the identity on  $D^{\circ} \times [0, 1]$   
if  $D^{\circ} \& A$ , then let  $r$  send any point in  $D^{\circ} \times [0, 1]$  to  
 $D^{\circ} in X \times [0]$   
now inductively assume we have defined  $r$  on the  $(k-1)$  sheleton  
of  $X$ , that is  $X^{(k-1)} \times [0, 1] \longrightarrow X \times [0] \cup A \times [0, 1]$   
for each  $k$  cell  $D^{h}$  of  $X$   
if  $D^{h} \subset A$  then let  $r$  be the identity map on  $D^{h} \times [0, 1]$   
if  $D^{h} \subset A$  then let  $r$  be the identity map on  $D^{h} \times [0, 1]$   
if  $D^{h} \subset A$  then let  $r$  be the identity map on  $D^{h} \times [0, 1]$   
where  $r$  is already defined  
and we have an "inclusion"  
 $D^{n \xrightarrow{i}} \times X^{(n-1)} \cup D^{n \xrightarrow{i}} X^{(n-1)} \cup D^{n} \xrightarrow{i} X^{(n-1)}$   
where  $a: \partial D^{n} \rightarrow X^{(n-1)}$  is the attaching  
map for  $D^{n}$   
so we have a map  $D^{n} \times [0, 1] \longrightarrow X^{(n)}$   
 $for composing  $\tilde{r}$  above with the above maps extends  
 $r$  over  $D^{m} \times [0, 1]$   
and eventually all of  $X^{(n)} \times [0, 1]$   
 $Proof of lemma 2:$  Actually we show for any pair  $[X_1A)$  satisfying  
 $HEP$  with A contractible, the quotient map  
 $q: X \rightarrow X/A$  is a homotopy equivalence  
for this note there is a homotopy  $f_{1}: A \rightarrow A \subset X$  st  $f_{0}: dA$   
 $note  $f_{0}: f_{0}' / A$  is a homotopy equivalence$$ 

So HEP gives a homotopy 
$$F_t: X \to X$$
 extending  $f_t$   
Since  $F_t(A) \subset A$  for all t we get maps  $\overline{F}_t: X|_A \to X|_A$   
 $X \xrightarrow{F_t} X$   
 $q \downarrow \circ \downarrow q$   
 $X|_A \xrightarrow{F_t} X|_A$ 

also  $F_{i}(A) = pt$  so  $F_{i}$  also gives a map  $h: \frac{X}{A} \to X$   $X \xrightarrow{F_{i}} X$   $g \downarrow \circ h \circ f_{i} \neq f_{i}$   $\frac{Y}{A} \xrightarrow{F_{i}} \frac{Y}{F_{i}} \times \frac{Y}{A}$ you can easily check  $h \circ g = F_{i}$  and  $g \circ h = \overline{F_{i}}$ but now  $h \circ g = F_{i} \sim F_{0} = id_{X}$   $g \circ h = \overline{F_{i}} \sim \overline{F_{0}} = id_{X}$   $\overline{F_{0}} = id_{X}$ 

Proof of lemma 3:  
Recall we have 
$$(X,A)$$
 and maps  $f,g:A \rightarrow Y$   
that are homotopic  
let  $F:A \times [o,1] \rightarrow Y$  be the homotopy  
now let  $M_F = X \times [o,1] \cup_F Y$   
claim  $M_F$  deformation retracts to  $X \cup_F Y$  and  $X \cup_G Y$   
 $\therefore X \cup_F Y \simeq X \cup_G Y$   
from lemma 5 we have a  
deformation retraction of  
 $X \times [o,1]$  to  $X \times [o] \cup A \times [o,1]$   
exercise:  $(X \times [o] \cup A \times [o,1]) \cup_F Y$   
 $X \cup_F Y$ 

given this we see the above deformation retraction induces a deformation retraction of MF to XU,Y

Proof of lemma 5 also shows X×[0,1] deformation retracts onto X×{1} UA×{0,1]

<u>exercise</u>:  $(X \times \{i\} \cup A \times \{o, i\}) \cup Y \cong X \cup Y$ 

so as above M<sub>F</sub> = XuyY