Algebraic Topology
Algebraic Topology builds "functions" (actually functors)
eg. groups, rings,

$$
\left\{\begin{array}{l}
\text { Topological spaces, } \\
\text { continuous maps }
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
\text { algebraic things, } \\
\text { algebraic maps }
\end{array}\right\} \text { vector spaces }
$$

the main point is to show two topological spaces are different

$$
\text { egg. } \mathbb{R}^{n} \not \equiv \mathbb{R}^{m} \text { if } n \neq m
$$

${ }^{*}$ homeomorphic

$$
\mathbb{R}^{3}-\otimes \not \equiv \mathbb{R}^{3}-民
$$

but can use alg.top. for many other thins

1) maps between spaces

- does a given space M embed in N ?
eg for what m does $\mathbb{R} P^{n}$ embed in \mathbb{R}^{m} ? (answer not known in general!)
- can you "lift" a map?
2.e given $f: A \rightarrow B$ and $\pi: E \rightarrow B$
does there exist $\tilde{f}: A \rightarrow E$ st. $\pi \cdot \tilde{f}=f$?
this vicludes \exists of sections of bundles $\pi \underset{B}{E} \stackrel{L}{\text { L }}$
- Fixed points of maps
egg. Brawer fixed point theorem: every map $D^{2} \rightarrow D^{2}$ has a fixed pt

2) Group actions
eg which finite groups act freely on S^{n} ?
3) Group theory
eg Every subgroup of a free group is free
$\left[F_{n}, F_{n}\right]$ is not finitely generated $(n>1)$ \uparrow free group rank
4) Algebra
eg prove the fundamental theorem of algebra
In this course we develop
5) fundamental group $\pi_{1}(x)$ and covering spaces
6) Homology groups $H_{k}(x) \quad k=0,1,2, \ldots$
7) Cohomology ring $H^{*}(x)=\oplus H^{k}(x)$
but before we start we will develop so important ideas that will be used throughout the course
O. Homotopy and CW Complexes
A. CW complexes

We develop alg. top. for all topological spaces, but a convenient (and very large) class of spaces to study are CW complexes
let $D^{n} \subset \mathbb{R}^{n}$ be the unit disk
$S^{n-1}=\partial D^{n}$ its boundary
given - Y a topological space and maps will be assumed to be

- $a: S^{n-1} \rightarrow Y$ a continuous map continuous even if the space obtained from Y by attaching an n-cell (via a) is

$$
Y U_{a} D^{n}=Y \Perp D^{n} /\{x \sim a(x)\}_{x \in S^{n-1}}
$$

$Y U_{a} D^{n}$ is given the quotient topology

An n-complex, or n-dimientional CW complex is defined inductively by
a (-1) complex is \varnothing
an n-complex X^{n} is any space obtained from an $(n-1)$-complex X^{n-1} by attaching n-cells
if $X=\bigcup_{n=0}^{\infty} x^{n}$, where X^{n} is an n-complex obtained by attaching n-cells to X^{n-1}
the we say X is an infinite dimensional complex we say a CW complex is finite if it only involves a finite number of cells
the k-skeleton of x, is the union $X^{(k)}$ of all 2 -cells for $2 \leq k$
Remarks:

1) C in CW stands for closure finite and just means the closure of each cell is contained in the union of finitely many cells
2) W in CW stands for weak topology and means a set S in X is open $\Leftrightarrow S n X^{(k)}$ open for all k (this is automatic if X is finite dimensional)
3) CW complexes are Hausdorff spaces (see Hatcher)

Exercise: Show the product of CW complexes is a CW complex.
Examples:

1) 1-dini CW complexes are graphs
2) Surfaces are CW complexes

3) $S^{n}=e^{0} v e^{n} \quad e^{i}$ an 1 -cell

4) $\mathbb{R} P^{n}=$ lines in \mathbb{R}^{n+1}
$=S^{n}$ with antipodes identified
$=D^{n}$ with antipodes on ∂D^{n} identified
$=\mathbb{R} P^{n-1}$ with D^{n} attached
Since $\mathbb{R} P^{0}=\{\rho+\}$ we see inductively that $\mathbb{R} P^{n}=e^{0} v e^{1} v e^{2} v \ldots v e^{n}$ is a CW-complex
Exercise: Show $\mathbb{C} P^{n}$ is a $C W$ complex

$$
C P^{n}=e^{0} v e^{2} u \ldots u e^{2 n}
$$

5) (Smooth) manifolds are (W complexes (see Hatcher)
a subcomplex of a CW complex X is a closed subspace $A \subset X$ that is a union of cells in X
note A is a CW complex too (X, A) is called a CW pair

B Homotopy
A fundamental notion in algebraci topology is homotosy and homotopy equivalence
let X and Y be topological spaces
two maps $f, g: X \rightarrow Y$ are homotopic, $f \sim g$, if there is a continuous map

$$
\Phi: X \times[0,1] \rightarrow Y
$$

(Φ is called a
st. $f(x)=\Phi(x, 0) \quad \forall x \in X$ homotopy)

Remarks:

$$
g(x)=\Phi(x, 1) \quad \forall x \in X
$$

1) Φ gives a family of maps $\phi_{t}: X \rightarrow Y$ where $\phi_{t}(x)=\Phi(x, t)$ these maps are "continuous in t " in the sence that Φ is contirvious.
so maps are homotopic if we can continuously deform one into the other
2) If $A \subset X$, then we say the homotopy from f to g is relative to A, denoted $f \sim_{A} g$, if in addition to above

$$
\Phi(x, t)=f(x)=g(x) \quad \forall x \in A, t \in[0,1]
$$

3) If $A \subset X$ and $B \subset Y$, then the notation $f:(X, A) \rightarrow(Y, B)$ means $f: X \rightarrow Y$ is a map and $f(A) \subset B$ we say f is a map of pairs
If $f, g:(X, A) \rightarrow(Y, B)$, then they are homotopic (as maps of pairs) if \exists a homotopy sit. each ϕ_{t} is a map of pairs

Example: for any space X any map $f: X \rightarrow[0,1]$ is homotopic to the constant map $g(x)=0$
the homotopy is $\Phi: X \times[0,1] \longrightarrow[0,1]$

$$
(x, t) \longmapsto(1-t) f(x)
$$

Exercise: homotopy is an equivalence relation on maps $X \rightarrow Y$
let $C(X, Y)=\{$ contrivous maps $X \rightarrow Y\}$

$$
\begin{aligned}
{[X, Y] } & =C(X, Y) / \sim \text { homotopy } \\
& =\{\text { homotopy classes of maps } X \rightarrow Y\}
\end{aligned}
$$

Examples:

1) for any X

$$
[X,[0,1]]=\{g(x)=0\}
$$

2) for any x

$$
[\{*\}, x]=\{\text { path components of } x\}
$$

one point space
We call a space X pointed if it has a "base point" $x_{0} \in X$
(Just some prechosen fixed point)
given two polvited spaces $\left(X, x_{0}\right),\left(Y, y_{0}\right)$

$$
[x, y]_{0}=\left\{\text { homotopy classes of maps of pairs }\left(X,\left\{x_{0}\right\}\right) \rightarrow\left(X,\left\{y_{0}\right\}\right)\right\}
$$

let y_{0} be the north pole in the n-sphere S^{n}
(i.e. $S^{n}=$ uni sphere in \mathbb{R}^{n+1}

$$
\left.y_{0}=(0,0, \ldots, 1)\right)
$$

the $n^{\text {th }}$ homotopy group of a (pointed) space $\left(X, x_{0}\right)$ is

$$
\pi_{n}\left(x, x_{0}\right)=\left[s^{n}, x\right]_{0}
$$

these are all groups and we will spend some terrie studying $\pi_{1}\left(x_{1} x_{0}\right)$ which is also called the fundamental group
Question: For what Y is $[y, x]_{0}$ "naturally" a group for all X ? For what Y i $[X, Y]_{0}$ "naturally" a group for all X ?
note: given a map $f: X_{1} \rightarrow X_{2}$ there is a natural function

$$
f_{*}:\left[Y, X_{1}\right] \rightarrow\left[Y, X_{2}\right]: g \mapsto f \circ g
$$

and

$$
f^{*}:\left[X_{2}, Y\right] \rightarrow\left[X_{1}, Y\right]: g \mapsto g \circ f
$$

(Proof: just compose homotory with f)
Rok: Natural in question above means f_{*}, resp f^{*}, is a homomorphism

We say $f: X \rightarrow Y$ is the homotopy inverse of

$$
g: Y \rightarrow X \text { if } f \circ g \sim i d_{y} \text { and } g \circ f \sim \dot{d}_{x}
$$

if $g: Y \rightarrow X$ has a homotopy inverse then we say g is a homotopy equivalence and we say X and Y are homotopy equivalent or have the same homotopy type and write $X \simeq Y$
Exercise: This is an equivalence relation
lemma 1:
The following are equivalent

1) $X \simeq Y$
2) for any space Z there is a one-to-one correspondence

$$
\phi_{z}:[x, z] \rightarrow[y, z]
$$

such that for all conturnous maps $h: z \rightarrow z^{\prime}$

$$
\begin{aligned}
& {[x, z] \xrightarrow{\phi_{z}}[y, z]} \\
& \quad \begin{array}{l}
h_{*} \\
0 \quad \downarrow h_{*} \\
{\left[x_{1}, z^{\prime}\right] \xrightarrow{\phi_{z^{\prime}}}\left[y, Z^{\prime}\right]}
\end{array}
\end{aligned}
$$

3) for any space Z there is a one-to-one correspondence

$$
\phi^{z}:[z, x] \rightarrow[z, y]
$$

such that for all continuous $h: z \rightarrow z^{\prime}$

$$
\begin{array}{r}
{\left[z_{1}^{\prime}, x\right] \xrightarrow{\phi^{z^{\prime}}}\left[z_{1}^{\prime} y\right]} \\
\downarrow h^{*} \\
{[z, x] \xrightarrow{\circ}{ }^{\circ}\left[h^{*}\right.} \\
{[z, y]}
\end{array}
$$

Proof: Exercise
Remark: So two spaces are homotopy equivalent iff homotopy classes of maps to and from the spaces are "naturally equivalent"
Examples:
0) If X and Y are homeomorphic, then they are homotopy equivalent.

1) $X=S^{\prime}$ is homotopy equivalent to $Y=S^{\prime} \times[0,1]$
in deed: $\quad f: X \rightarrow Y: x \mapsto(x, 0)$

$$
g: Y \rightarrow x:(x, s) \mapsto x
$$

note: $g \circ f=i d_{x}$

$f \circ g \sim 1 d y$ by $\phi_{t}: Y \rightarrow Y:(x, s) \mapsto(x, t s)$
2) A space X is called contractible if it has the homotopy type of a point.
e.g. $\mathbb{R}^{n} \simeq\{*\}$ (exercise)
3) If $A \subset X$ then a retraction is a map $r: X \rightarrow A$ such that $r(x)=x \quad \forall x \in A$ a deformation retraction of X to A is a homotopy, rel A, from the identity on X to a retraction:

$$
\begin{array}{ll}
\phi_{t}: X \rightarrow X & t \in[0,1] \\
\phi_{0}(x)=x & \forall x \in X \\
\phi_{1}(X)<A & \\
\phi_{t}(x)=x & \forall x \in A \text { and } t
\end{array}
$$

note: If X deformation retracts to A then $X \simeq A$ indeed let

- ϕ_{t} be homotopy above
- $i: A \rightarrow X$ the inclusion map
then i and ϕ_{1} are homotopy inverses since $\phi_{1} \circ i=i d_{A}$ and $10 \phi_{1}=\phi_{1} \sim \phi_{0}=1 d_{x}$
given spaces X, Y and

$$
a \operatorname{map} f: X \rightarrow Y
$$

the mapping cylinder M_{f} is

$$
M_{f}=(X \times[0,1]) \Perp y / \sim
$$

where $(x, 1) \sim f(x)$
note: M_{f} deformation retracts to Y indeed $\quad \begin{aligned} \tilde{\phi}_{t}:(x, s) \in X \times[0,1] & \longmapsto(x,(1-t) s+t) \in X \times[0,1] \\ y \in Y & \longmapsto y \in Y\end{aligned}$

$$
y \in Y \longmapsto y \in Y
$$

induces maps $\phi_{t}: M_{f} \rightarrow M_{f}$ s.t. $\phi_{0}=\left(d_{M_{f}}\right.$

$$
\begin{aligned}
& \phi_{1}\left(M_{f}\right) \subset Y \\
& \phi_{t}(y)=y \quad \forall y \in Y
\end{aligned}
$$

thus $M_{f} \simeq Y$
there are obvious inclusions $i: X \rightarrow M_{f}: x \mapsto(x, 0)$
$j: Y \rightarrow M_{f}: y \mapsto y \quad$ (J has homotopy inverse ϕ_{1})
now $x \underset{i}{f} Y_{i s} j$ and jof~i
Slogan: Any map is an inclusion upto homotopy
examples

let $X=3$ green circles
let $Y_{1}=$ purple curves

let $f: x \rightarrow Y$, given by following lines in picture note Z is homeomorphic to M_{f}

$$
\text { so } Z \simeq Y_{1}
$$

similarly

$Z \simeq Y_{2}$

$Z=Y_{3}$

So $Y_{1} \simeq Y_{2} \simeq Y_{3}$ even though it is not clear what the homotopy equivalence is!

Two criteria for homotopy equivalence
lemma 2: \qquad then $X \simeq X / A \longleftarrow$ collapse A to point
examples

1) X a graph
A = any edge connecting distinct verticies $\} \quad X / A \simeq X$
so any connected graph is homotopy equivalent to a wedge of circles
2)

$$
x / A \cong=s^{2} / \text { poles } \begin{gathered}
\text { identified }
\end{gathered}
$$

$x / B \cong \cdots \cdots S^{2} v S^{1}$

$$
X / A \simeq X \simeq X / B
$$

3)

lemma 3:
let (X, A) be a CW pair
$f, g: A \rightarrow Y$ homotopic maps
Then $X v_{f} Y \simeq X u_{g} Y$
example:

$$
\begin{aligned}
& X=D^{n} \quad A=\partial D^{n} \\
& Y=S^{n}
\end{aligned}
$$

$f: A \rightarrow Y$ map 4 to equator
$g: A \rightarrow Y$ constant map
exercise: $f \approx g$
so $\quad X u_{f} Y \simeq X u_{g} Y$

To prove both lemmas we need the homotopy extention property

$$
(H E P)
$$

A space X and a subspace $A \subset X$ has the $H E P$ if whenever we have a map $F_{0}: X \rightarrow Y$
and a homotopy $f_{t}: A \rightarrow Y$ of $f_{0}=F_{0} l_{A}$ then we can extend the f_{t} to $F_{t}: X \rightarrow Y$
lemma 4:
A pair (X, A) has the HEP $\Leftrightarrow(X \times\{0\}) \cup(A \times[0,1])$ is a retract of $X \times[0,1]$
see Hatcher for general case
Proof: (\leftarrow) we assume A is closed not new. but makes proof easier and given the retract $\left.r: X \times\{0,1] \rightarrow(X \times\{0\}) \cup(A \times[0,1\}) \quad \begin{array}{l}\text { most examples } \\ \text { satisfy }+ \text { his }\end{array}\right)$ and any map $F_{0}: x \rightarrow Y$ and homotopy $f_{t}: A \rightarrow Y$ of $f_{0}=F_{0} /_{A}$ note this defines a map $F:(x \times\{03) \cup(A \times[0,1]) \rightarrow Y$
F is continuous since A is closed
now For: $X \times[0,1] \rightarrow Y$ is the desired homotopy!
\Leftrightarrow Consider the identity map $F: X \times\{0\} \cup A \times\{0,1] \rightarrow X \times\{0\} \cup A \times\{0,1]$
this gives $F_{0}: X \rightarrow x \times\{0] 0 A \times[0,1]$ by $F l_{x}$
and $f_{t}: A \rightarrow X \times\{0\} \cup A \times\{0,1]$ by $f_{t}=\left.F\right|_{A \times\{t\}}$
so $H E P \Rightarrow \exists F_{t}: X \rightarrow X \times\{0\} \cup A \times[0,1]$
the F_{t} give a map $r: x \times[0,1] \rightarrow X \times\{0\} \cup A \times[0,1]$
$(x, t) \longmapsto F_{t}(x)$
that is clearly a retraction

Lemma 5:
If (X, A) is a CW pair, then $X \times\{0\} \cup A \times[0,1]$ is a (deformation) retract of $x \times[0,1]$
In particular, (X, A) has the HEP

Proof:
Main point: for any disk D^{n} there is a deformation retraction of $D^{n} \times\{0,1]$ to $D^{n} \times\{0\} \cup \partial D^{n} \times\{0,1]$
Pf: let $D^{n} \subset \mathbb{R}^{n}=\mathbb{R}^{n} \times\{0\} \subset \mathbb{R}^{n+1}$
so $D^{n} \times[0,1] \subset \mathbb{R}^{n+1}$

let $p=(0,0, \ldots, 0,2)$
given $x \in D^{n} \times\{0,1]$ let $l_{x}=$ line through x and p and set $\tilde{r}(x)=l_{x} \cap\left(D^{n} \times\{0\} \cup \partial D^{n} \times\{0,1]\right)$
clear \tilde{r} is a retraction (need to check continuous and $\vec{r}_{t}=t \tilde{r}+(1-t) l_{D^{n} \times[0,1]}$ exercise) is a deformation retraction.
we define r on $X^{(0)} \times[0,1] \rightarrow(X \times\{0\}) \cup(A \times[0,1])$ as follows if a vertex $D^{\circ} \subset A$, then let r be the identity on $D^{0} \times[0,1]$ if $D^{0} \& A$, then let r send any point in $D^{0} \times[0,1]$ to

$$
D^{0} \text { in } X \times\{0\}
$$

now inductively assume we have defied r on the $(k-1)$ skeleton of X, that is $X^{(k-1)} \times\{0,1] \rightarrow x \times\{0\} \cup A \times\{0,1\}$
for each k-cell D^{k} of X
if $D^{h} \subset A$ then let r be the identity map on $D^{k} \times[0,1]$ if D^{k} is not a cell in A then note $\partial D^{k} \times[0,1] \rightarrow X^{(k-1)} \times[0,1]$ where r is already defined and we have an "inclusion"

$$
D^{n} \stackrel{i}{\underset{\longrightarrow}{(n-1)} \cup D^{n} \xrightarrow{q}} \xrightarrow{(n-1)} \cup D^{n} /\left(x \in \partial D^{n}\right) \sim a(x) \in X^{(n-1)}
$$

where $a: \partial D^{n} \rightarrow x^{(n-1)}$ is the attaching map for D^{n}
So we hove a map $D^{n} \times\{0\} \xrightarrow{j} x \times\{0\}$ Le r is defined on $\left(D^{n} \times[0]\right) \cup\left(\partial D^{n} \times[0,1]\right)$
so composing \tilde{r} above with the above maps extends r over $D^{n} \times[0,1]$
and eventually all of $X^{(n)} \times[0,1]$
Proof of lemma 2: Actually we show for any pair (X, A) satisfying HEP with A contractible, the quotient map $q: X \rightarrow X / A$ is a homotopy equivalence for this note there is a homotopy $f_{t}: A \rightarrow A \subset x$ st: $f_{0}=i d_{A}$ note $f_{0}=\left.F_{0}\right|_{A}$ where $F_{0}=1 d^{x} x$ $f_{1}=$ constant map
so HEP gives a homotopy $F_{t}: X \rightarrow X$ extending f_{t}
since $F_{t}(A) \subset A$ for all t we get maps $\bar{F}_{t}: X / A \rightarrow x / A$
also $F_{1}(A)=$ pt so F_{1} also gives a map $h: X / A \rightarrow X$

you can easily check $h \circ g=F_{1}$ and $g \circ h=\bar{F}_{1}$
but now $h \circ g=F_{1} \sim F_{0}=1 d_{x}$

$$
q \circ h=\bar{F}_{1} \sim \bar{F}_{0}=i d_{x / A}
$$

Proof of lemma 3:
Recall we have (X, A) and maps $f, g: A \rightarrow Y$ that are homotopii
let $F: A \times[0,1] \rightarrow Y$ be the homotopy
now let $M_{F}=X \times\{0,1] U_{F} Y$
claim M_{F} deformation retracts to $X v_{f} Y$ and $X u_{g} Y$

$$
\therefore X v_{f} Y \simeq X u_{g} Y
$$

from lemma 5 we have a deformation retraction of

$$
X \times[0,1] \text { to } X \times\{0\} \cup A \times[0,1]
$$

exercise: $(X \times\{0\} \cup A \times\{0,1]) \cup_{F} Y$

$$
X v_{f}^{115}
$$

egg. $\begin{array}{ll}X=\{0,1] \\ A & =\{0\}\end{array} \quad Y=D^{2}$

given this we see the above deformation retraction induces a deformation retraction of M_{F} to $X V_{f} Y$
Proof of lemma 5 also shows $X \times[0,1]$ deformation retracts onto $X \times\{1\} \cup A \times[0,1]$
exercise: $(X \times\{1\} \cup A \times\{0,1]) \cup_{F} Y \cong X \cup_{g} Y$
so as above $M_{F} \simeq X_{g} Y$

